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ABSTRACT 

A reggeon field theory which describes the interaction of a 

pomeron with a pair of fermions of opposite parity is studied using the 

renormalization group and the ~-expansion. In the infrared limit a 

solution is found with a number of physically attractive features. The 

renormalized fermion.trajectories are nearly proportional to u for 

small u even though the bare trajectories were proportional (for small 

112 u)tou ~ Furthermore, both renormalized parity poles are on the 

physical j-plane sheet for u< 0, but one of them moves under a cut for 

u > 0 and does not appear as a physical particle -- all this despite the 

fact that the bare theory has physical fermions of both parities. 

Phenomonological implications for backward r-N scattering, and impli- 

cations for the general structure of Reggeon field theories are also 

discussed. 

“Address after September 1, 1974: Division TH, CERN, CH-1211 
Geneva 23, Switzerland. 

t Supported by the Max Kade Foundation. 

c Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 



-2- FERMILAB-Pub-741 6i-THY 

I. INTRODUCTION 

It is now generally known that for a Regge description of high- 

energy processes, the exchange of a simple pole must a priori be 

corrected by additional pomeron exchange. If the pomeron has intercept 

one, this leads to branch cuts in the angular momentum plane, which at 

t=O accumulate at the intercept of the pole. When summing up all these 

corrections, the resulting j-plane singularity may be very different from 

the simple pole. A technique for the examination of such reggeon- 

pomeron interaction is Gribov’s reggeon calculus.’ In this scheme one 

constructs a field theory in two space dimensions (transverse momentum 

and one time dimension (angular momentum). The solution of this field 

theory should describe the j-plane structure of the complete reggeon- 

pomeron interaction. Such field theories were studied several years 

‘ 
ago by Gribov and others. Their approach was primarily perturbative, 

although they did deduce some properties of the exact solution. 

Recently, substantial progress has been made in applying 

renormalization group techniques to these theories. A number of models 

for the interaction of the pomeron with itself3 have been studied in this 

way,as well as a theory in which a boson trajectory interacts with a 

4 
pomeron. The results of these studies strongly indicate that the 

renormalized pomeron or boson singularity which contains the complete 

interaction with the pomeron is considerably different from what it 
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was without the interaction. 

In the present paper we shall use the renormalization group to 

examine a Reggeon field theory with a fermion and a pomeron. A theory 

similar to ours was studied some time ago by Gribov, Levin and Migdal, 
5 

but the recent results on the pomeron renormalization indicate a necessity 

to reconsider the fermion problem. Indeed, our results differ 

substantially from those of Ref. 5. 

A careful study of the fermion trajectory is of particular interest 

not only because of its role in high energy physics, but also because the 

reggeization of fermions has for many years been plagued with apparent 

inconsistencies. In backward v-N scattering, the assumption of Mandelstam 

analyticity for the A and B amplitudes implies a symmetry, the MacDowell 

symmetry, between the u-channel partial wave amplitudes! If backward 

V-N scattering is dominated by the exchange of fermion Regge poles, this 

symmetry requires the existence of two poles of opposite parity whose 

trajectories are related by 

a+(&) = ~-(-fi). (1.1) 
This suggests that the natural variable for the trajectories to depend on 

is & rather than u. Experimentally, however, it seems that the nucleon 

trajectory is almost linear in u, and thus it is rather puzzling that the 

negative parity nucleons, which should be almost degenerate 

with the well-known ones of positive parity have not been seen. To date, 
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no satisfactory dynamical mechanism has been proposed to explain the 

absence of these parity doublets. 

In comparison with boson reggeization, the problem of fermion 

reggeization seems to be in a state of rather deep confusion. It would 

certainly be desirable to construct a theory which would help us see 

the order underlying’this chaos, and it is to the description of such a 

theory that we now turn. 

The concept of a Reggeon field theory that we use in this paper will 

be the same as in the earlier studies of the pure pomeron and the boson- 

pomeron interaction. In defining our theory, we have, a priori, consider- 

able freedom since we are free to choose the energy-momentum relations 

of the field, as well as their interactions. The theory we consider 

contains a pomeron and a pair of fermions. Both the pomeron and the 

fermion are allowed to emit and absorb pomerons, so that our chosen 

Lagrangian contains two kinds of cubic couplings. Consistent with the 

usual ideas about absorption and Gribov’s analysis of signature, the 

coupling constants are taken to be purely imaginary. 

Because it is in some sense (not, as it turns out calculationally) 

the simplest choice, we assume for the bare pomeron a linear pole: 

a,(u) = 1 + ao% (1.2) 

and for the bare positive and negative parity fermions 
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“3 u) = cYOF(0) * ppi+ Q;F. 1 (1.3) 

Notice that these poles satisfy the condition (1.1) and thus are consistent 

with the MacDowell symmetry. 

In the Reggeon field theory the energy is 1 - (angular momentum), 

and we see that the pomeron (1. 2) plays the role of a non-relativistic 

massless particle while the fermion whose intercept is less than 1 

behaves like a particle with non-zero mass. Interaction of a massless 

particle with a massive one .is strongly reminiscent of QED. There 

it is known 
7 

that the electron propagator in the infrared limit behaves 

like 

G(p2) = A(p2) +; B(p2) 

p2- m2 

A,B-(p2-m2)P . 

This gives us an idea how our exact fermion propagator might be different 

from what is expected in perturbation theory: In perturbation theory, lowest 

order corrections to the bare electron propagator lead to a mass shift, but 

A, B are still of the form (p2 - m210, whereas the full renormalized pro- 

pagator behaves like (1.4), with p # 0. Our case, however, is somewhat 

more complicated than QED. We have no gauge invariance and our “photon” 

has a self-interaction. 

Using renormalization group techniques and the E -expansion, we 

find several fixed points which could govern the infrared behavior of our 



-6- FERMILAB-Pub-74/ 61-THY 

theory. Only two of these turn out to give physically acceptable 

solutions, but these solutions, in fact, possess a number of rather 

attractive properties. First, the trajectory of the renormalized 

fermion is almost linear in u, even though the bare, input trajectory 

1 
was proportional to uz a Although, strictly speaking, we can only draw 

this conclusion near u = 0, this form is in much better agreement with 

the experimental situation than is the bare trajectory. Second, in 

addition to these moving singularities, we find, treating the pomeron- 

fermion interaction non-perturbatively, that an additional cut is generated 

in the fermion propagator in the j-plane. For u < 0, both parity poles 

are on the physical j-plane sheet, but for u > 0, one .of tiiem moves 

onto an unphysical sheet and thus does not show up as a physical 

particle. Hence, even though the bare theory has physical particles of 

both parities, the renormalized theory does noto This dynamical 

mechanism for removing the negative parity state depends primarily 

on a certain anomalous dimension being non-integral. The exact value 

of this dimension is not important for the argument, and so the mechanism 

should be valid in most Reggeon field theories, with the possible 

exception of certain infrared free theories. 

In the course of deriving this result, we first review the reggeon 

calculus for fermions and formulate our field theory. Section III 

describes our renormalization Procedure and the renormalization group 

equation. In Sec. IV we search for solutions and finally in Sec. V, we 

discuss their physical content. 
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II. REGGEON FIELD THEORY FOR FERMIONS 

In this section we shall formulate the Reggeon field theory for 

fermions. To this end, we first summarize the Reggeon calculus as 

discussed by Gribov, Levin and Migdal in Ref. (5) . In particular, 

we want to repeat their derivation of the fermion propagator. 

As is well-known, the requirement of Mandelstam analyticity for 

the A and B amplitudes in r-N scattering leads to a relation between the 

positive and negative parity states in the u-channel. For an amplitude 

described by the exchange of fermion poles, this relation, the MacDowell 

symmetry, means that the existence of a positive parity fermion trajectory 

cy+, implies the existence of a negative parity fermion trajectory, (Y-, 

such that 

a+(G) = a-(-G). (2.1) 

Now, we can separate the backward V-N scattering amplitude (Fig. 1) 

into two pieces with definite u-channel parity: 

T(s,~) =;Y~{M+A++M-A-} YOU. (2.2) 

A+ = $(I T- 

-3 
) is the projection operator onto states with definite 

parity, q1 = -yI* qi, and q is the ( transverse momentum) vector 

perpendicular to the large momenta of the scattering process in the 

usual Sudakov analysis. q2 = -q2L = u, so for u< 0, Q is purely 

imaginary. 
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If M* are dominated by the exchange of fermion Regge poles, 

a;(&) 

M*= n (@+)r* 

* 
n is the signature factor and the residues r are related by 

r+(u) = r-(-&i). 

We can also write T(s,u) in terms of a Mellin transkm: 

T(s,u) =; y5 & dj n (j)sj fj (u)y5u . 

Then the u-channel partial wave fj(u) is given by 

+ 

fj (u) = r (u) + 
r-(u) - 

j-cu+(dii)* +j--C&i) * . 

For real r*, and for a trajectory of the form 

c+)=l -A*p’&+a;u+... 

(2.6) can be written as 

fj(“)= y 
j- @u(q) 

where 

a(q) =i - AF+& +c+, . 4 

1 - AF+p’s +CY&U 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.91 
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To calculate Regge cuts in the Reggeon calculus arising from the 

interaction of fermion Regge poles with the Pomeron, (an example of 

which is shown in Fig. 2 ), one proceeds in much the same way as for 

boson Regge poles, 
i 

but in this case, the fermion propagator is 

i[E +A OF- 

The reader will notice thelovely property that if (~6 = 0, (2.10) looks 

just like a non-relativistic fermion propagator in ordinary field theory. 

One could, of course, choose more complicated forms for the fermion 

propagator, and these will lead to different theories, but (2. IO), 

derived using a Taylor’s expansion in& is the simplest, and is the 

one with which we shall be concerned. Before continuing, there is one 

additional simplification in (2. 10) we want to make. What we want to 

study by means of the Reggeon field theory is the behavior of the 

Green’s functions for small u. Unless PO ’ = 0, one would expect that 

the terms of higher order in hi;; would have little influence on the small 

u behavior of the theory. For the pure pomeron field theory it has ‘been 

shown9 that higher order terms in the bare propagator do not affect the 

infrared behavior, and this encourages us to expect a similar situation 

in our theory. Hence, for calculational simplicity, we set a’OF = 0 in 

what follows. It is, however, important to remember that the complete 

bare fermion propagator is of the form (2.10) with oiF # 0. This is 

necessary if the bare theory is to possess particle poles of negative as 

well as positive parity and if the bare trajectory is to behave proportional 

- u for larger u. 
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The field theory we want to construct will couple a bare pomeron 

with a linear trajectory: = 

aOP 
= 1 + cy;I q2 (2. iia) 

to a bare fermion whose trajectory can be symbolically written as 

o0F 
= 1 - AOF + PO*;. (2. Ilb) 

AoF determines the intercept of the bare trajectory, and can be adjusted 

to give the observed intercept of the renormalized trajectory. In the 

Reggeon field theory, 1 - (angular momentum) plays the role of energy, 

so from (2.11) we have the energy-momentum relations satisfied by the 

bare particles: for the pomeron 

E = +iq2 (2.12a) 

and for the fermion 

E =-pi; +AOF. (2.12b) 

Let us now write down the Lagrangian density which governs our 

field theory. We will then discuss the terms appearing in it 

(2.13) 

with 

xp= $+x $‘-~or&+.~~-AoP$+o, (2.14) 

qF = $J’Q - PO++(Q) + (Q+N]-AoF”++, (2.15) 

.q -2 (cb+42 + 4+24)+ 
-ir 
+&+&+u) 

+ 6 $ $+ + bF $J, . (2.16) 
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The field 4 +($ ) creates (annihilates) a pomeron, and $+($) creates 

(annihilates) a fermion. yoP (poF) is the free Lagrangian density for 

the pomeron (fermion), and it is not difficult to see that in momentum 

space these reproduce the correct energy-momentum relations (2.12). 

2. I is the interaction Lagrangian, and consists of two kinds of terms: 

three point functions where a pomeron may be absorbed or emitted 

from a pomeron or fermion line, and mass insertions for both the 

pomeron and the fermion. These are adjusted at each order of perturbation 

theory to give the renormalized trajectory its observed intercept. 

The reader will have noticed that our interaction Lagrangian does 

not allow for the creation or annihilation of fermion pairs. Because 

AOF is strictly positive, clos’ed fermion loops will be unimportant for the 

small q‘ (more generally, infrared) behavior of the theory, and so we 

neglect such terms. (Or, rather, we define our theory without them, 

since crossing symmetry is not a sacred principle in the Reggeon field 

theory. ) Without these terms, fermion number is conserved through 

each graph. Hence, we can use the trick of Ref. 4 and make a phase 

change of the fermion field. 

$kt) -e 
+iAFO* t 

$(zt). 

. This formally eliminates A, F from our calculations, and lets us 

define a shifted energy 

(2.17) 

g=E-A,,=i-AoF-j (2.18) 
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which is conserved in graphs with a fermion. 

We will want to formmate our field theory in D-space and one time 

dimensions. Physics takes place in the Reggeon field theory at D-2, 

but more generally we can define the action as 

A = 
J 

dDx dtm!i?(~, t). (2.19) 

We will want to study the Green’s functions with k fermions entering 

and leaving the graph, n pomerons entering and m pomerons leaving. 

These functions, G (k’n’ m) are defined by (Fig. 3 1. 

k k 
G(~-(+; gj,gj’ a(iEi+II gj - ,“Ei* -r ““j’ 

ftD SD k 
, , d xi dti 11 d x. ’ dti’ J t dDyj dtj dDyj 1 

’ dtj’ 

(2.20) 

expi f; CZi<- . Eit,) + r” (Tj< - gjtj ‘-‘m’;;,‘4;-Ei’t; 1 -kly, Pj - Tj*‘) 

<O [ T @*6&) . . 4 +G& 4 (x;t,’ L . 6 qm*tm* ) ++(;& ). . ++(gntn) 

For convenience we record here the Feynman rules for construction 

the theory in D-space and one-time dimension. (From now on, we 

write always q instead of qL: so q2 = -u). 
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1. Draw all topogically distinct diagrams with arrows indicating 

the direction of propagation of the fermion and the pomeron. 

2. Integrate around each loop I 
dDk. dE . D+1 

3. For each triole Regge vertex, put in a factor X0/ (2~) 2 , D+l 

and, for each pomeron-pomeron-fermion coupling, a factor r,/ (2~) 
2 

4. For each pomeron (fermion) mass renormalization counter- 

term a factor i6(ihF). 

5. For each pomeron line a bare propagator 

G(:;‘. ‘)(E,c2) = i[ E-ag’c2+ie] -I. 

6. For each fermion line a bare propagator 

G(l’o’o)( g,T) = i[ g+pg’q+ic] -I. 
0 

7. A factor I/ 2 for each two pomeron loop with both momenta 

in the same direction. 

8. Energy and momentum are conserved at all vertices. 

Finally, we conclude this section with a dimensional analysis 

of the quantities which appear in the Lagrangian. Using the condition 

that { [ 1 means dimension of > 

[A 1 = E”ko (2.21) 

we have 
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[I+] = [$I = kD’2a 

[A,,] = [rol =Ek-D’2V 

[ @o 
‘1 = Ek-2, [PO’] =Ek-4. 

(2.21) 

(2.221 

(2. 23) 

III. THE RENORMALIZATION GROUP EQUATIONS 

We now want to apply renormalization group arguments to the 

connected parts of the Green’s functions defined in (2. 20). Actually, 

it is more convenient to work with the amputated connected Green’s 

functions defined as 

5 (0:1,1) 
I(2n’m)(Ei,<: gj,<) ={ 11 G 

IQ 
- + Wi>qi) 11 G 

k k ‘I.O., g 
xGHio’ “‘( &fj,pj)cG’ ’ (3.1) 

G(k’n’m)(E;;i; gj>cj ) . 

(i;O, 0) 
Obviously, F is just the inverse fermion propagator whose 

zeroes correspond to the j-plane singularities of the fermion 

propagator. To discuss the backward rr-N scattering amplitude, we 

will also need to consider the Green’s functions, I? 
(l;n, m) , which 

contribute fermion plus pomeron exchange to the scattering amplitude. 
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As we mentioned before, the number of fermions is conserved 

everywhere in each diagram. This leads to the pleasant consequence 

that Green’s functions with no incoming or outgoing fermions are 

completely independent of the fermions. Hence, the renormalization 

of the pomeron propagator and three point function decouples from the 

rest of the problem and can be considered separately. This has already 

been done by Abarbanel and Bronzan, 3 
and so we can use their results 

for this part of our calculation. 

Before constructing the renormalization group equations for r (kin, m) 

we must define our renormalized quantities. For the renormalized 

pomeron slope, LY ‘, and the triple pomeron coupling, XI we use the 

definitions of Ref. (3 ). 

p:1,1 ) (E k’2) 
> / I 

1 E=O 

l-F,0 

= 0 , 

aiT(O;l, 1) 

aE 
(E,c2) =i , 

E = -E 

k2 n =o 

BirEiiJ ‘)(E, k2) 

8k2 
-‘(EN) , 

(3.2) 

(3.3) 

(3.4) 

E = -EN 

k2 =O 
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l.(o;i,2+E k’ 
R 1’ 1”“’ 

E k’ 
3’ 3 

X(EN) 
c 

u+1 - (3.5 
E+4=2EZ=2E3=-EN - 

ki =0 
(2*) 2 

where the normalization point is defined at some negative energy, -EN, 

with all external momenta set equal to zero. As for the fermion 

propagator, we require the renormalized trajectory to have its observed 

intercept A E In terms of our Green’s function, this means 

r(Lo, 0, ( g,k-) 
R 

=o. 

g= 0 

k2= 0 

(3.6 1 

(kO,O) For the other renormalization conditions we observe that r R 

has the matrix structure 

T(;O, O)( 8, I;) = 4 1( 8,1T2) + ii $,( 8,1T2). (3.7) 

The analogy to (3. 31, we can require that 

airi’“‘O)( 8,;) 

akf g-E =’ 
N 

i-=0 

(3.81 

and we can define the renormalized slope, P’(EN), by 
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air (kO> O’(&$y) 

R 

ai; 
= @‘(EN) 

g -EN 

l?= 0 

where 

a 

-= D5 afi - 
- Tr (Y * -g). 

(3.9) 

(3.10) 

Finally, r (EN), the renormalized fermion-fermion-pomeron coupling 

constant is given by 

r(dioai) ( &fi, rf> gp,> ~233,~3) r(EN) 
D+i ’ 

Fi=2q =2E3 =-EN (2~r) 2 

ki = 0 (3.11) 

Now, the Green’s functions are multiplicatively renormalized, that 

is, 
n-!-m 

,+k; 
R 

n,mJIZ 2 zk rk;n, ml 
P Fu * (3.12) 

Thus, (3.3) and (3.8) serve to define the pomeron and fermion wave- 

function renormalization constants Zp and ZF. 

All the renormalized Green’s functions, FR, are functions of the 

renormalized parameters, cy ‘(EN), P’(EN), AWN) and r(EN), as well 

as the renormalization energy, EN, and their kinematical arguments, 

Ei, ki. For our Purposes, it is convenient to trade in some of these 
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parameters for dimensionless parameters of which the TR may be 

considered functions. We, therefore, replace X, r, and p’ with the 

following dimensionless quantities: 

A (EN) D-4 

y(EN) = 
[a*(ENflD’4 EN 

4 

’ 

r(EN) 
D-4 

h(EN) = 
4 

[aa(ENf’4 
EN ’ 

(3.13) 

(3.14) 

(3.15) 

Before discussing the renormalization group equation, we mention 

a result which will be useful later. Using the dimensional analysis at 

the end of the last section, and considering TR as a function of p, h, and 

y. we can scale all E’s by a , and all k’s by b to obtain 

I-(;~‘~+E&; gygj;p. a’, h, y. EN1 

2-2k-n-m 

=ab 
2 (kn, m) 

rR 

Ei <I ,$?? zl *b2 
y-,bia’ b’P> a a> Lhy 

Now we are ready to write down the renormalization group 

equations for the Green’s functions. Since the unrenormalized Green’s 

fur&ions have not been told where we have chosen to define the 
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renormalized quantities, they cannot depend on EN, that is, 

prk a 
EN aEN u 

n,m) =o. 

@O ‘. PO’, Xo.ro fixed 

Using (3.12). the chain rule of differentiation, and remembering that 

TR are functions of the renormalized parameters, this becomes 

a 

[- 

a 
EN aEN +Pp(y)c +P, (yh,~)$~+ @(YAP)& -Qy,h,p,da~ 

- kyF (y,h, P) - 
m+n 
2 y,(y.h, PIT 1 ‘k’n’m’(Ei,~i;~.a’,h,y,EN) 

=o (3.17) 

where 

p,(y) = EN $- 7 
N 

(3.18) 

ah 
PF(Yh’)=EN~ 9 

%‘,h,p)=EN$$- . 
N 

5 (y. a’) = E 
au’ 

N%’ 

yFb'>h,~) = EN 

aan ZF 
aE 3 

N 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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a Pn Z 
2. 

Y,(Y) = EE aEN (3. 23) 

A brief glance at our dimensional analysis teaches us that, except 

for 5 , all of these functions are dimensionless, and therefore, can 

depend only on the dimensionless quantities y. h, and p. but not on LY’. 

Moreover, since the Green’s functions with k=O decouple from the 

fermion interaction, the renormalized pomeron quantities do not 

depend on the fermion parameters. Hence, pp. yp and c/a’ are only 

functions of y. Notice also that when k=O, (3.17) reduces to the 

renormalization group equation for the pomeron Green’s functions 

found in Ref. ( 3 ), as it should. 

We want to examine the infrared behavior of l? (k’n’ m), in particular 

r(l;n, m) , when Ei, 8’- 0. We can do this by scaling all energy factors 

by5 > and considering the limit 5 -f 0. Using (3. i6), it is easy to 

a derive our equation for EN aEN - TR in terms of a derivative with 

respect to 5. Eliminating EN G in(3.17)wefindfork =1 
N 

[ 

a a a a a 
-5z+Ppay+PF ~+@,++(I:-@'),a,+l-YF 

n+m 
I - 2’~ ‘R 

(lXL m, (c Ei, gi; p, cy’, h, y. EN) = 0 ’ (3. 24) 

The parameters LY’, y, h, and p are now to be considered as 

functions of t Z Pn 5. If we introduce the auxilliary functions 
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$qt ): 2 = - Pp[FWI I 30) = Y I (3. 25) 

Z’(t): s = Z’(t) -L[Z”(t).y(t)l, m’(O) = a’, (3. 261 

ai; 
F;ct ): z = -Q [y(t),li(t),;(t)l, NO) =h + (3. 27) 

i;lt,: g= -0 [y(t),‘i;(t),yw)l I 30) = P t (3.28 I 

Then the well-known solution to (3. 24) can be written as 

(l;n, m) 
=R (~E&;p,e’,h.y,EN) ==R (*in’ m, (Ei, i+-(-t ), ~“(-t).‘Zi(-t),~(-t),EN) 

exp {J dt~[l-YF(~(t’),Ei(t’),~(t’)) 

(3. 29) 

VI. SOLUTIONS OF THE RENORMALIZATION GROUP EQUATIONS 

Without kncwing the auxilliary functions, (3. 25) to (3.281, it is 

not possible to determine the behavior of (3. 29) as a function of 5 

(or t). In particular, the infrared limit 5 -, 0 (t -- m ) may be 

governed by zeros (Gell-Mann-Low eigenvalues 1 of the functions p 
P’ 

PF and 0. The only technique presently known to learn about such 
i 

zeroes is perturbation theory. A priori, it is not obvious that such a 

perturbation expansion is justified, but if it turns out that a zero of the 

functions pp, p, and 0 exists for small values of the coupling constants 
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then the perturbation expansion in the neighborhood of this point will be 

justified a_posteriori. The analysis in Ref. (3 ) of the pure pomeron 

case, as well as that of Ref. (4 ) for the rho-pomeron field theory 

indicates the existence of such zeroes for values of the coupling 

- 
constants on the order of hj4D = hJ;-. The parameter which seems to 

determine the accuracy of the approximation, therefore, appears to be 

e. We proceed with the hope that the infrared behavior in our case 

will also be governed by coupling constants which are small, in some 

10 
sense. 

To examine this possibility, we need to calculate all the functions 

appearing in (3. 24) to lowest nontrivial order in renormalized perturbation 

theory, and look for the zeros of p p’ ‘F and 0. Fortunately, we already 

know the properties of a’(t ) and y(t ) from Ref. ( 3 ): 

where 

y,(y) = -2Ky’ 9 

5/a’ = -2Ky2 , 

BP(Y) = -y [< - 6KY) , 

K= ; 
D/2 r(3- ;, 

0 
4(2rr) 

D ’ 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The zero of p,(y) occurs at 

2 
y 1 

=o (4.5a) 
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In this one-dimensional parameter subspace, (4. 5b) is an infrared stable 

fixed point, because 

> 0. (4.6) 

Y’YI 

From Ref. (3 ) we also learn that in the infrared limit (t -t -m ) a’(t) 

behaves as 

To compute the remaining functions p,(y, h, p) and O(y, h, p), we 

have to calculate the graphs of Fig. 4 and use the renormalization 

conditions, (3.7) - (3. 11). Because of the spin structure of the fermion 

the calculations are considerably more involved than in the boson- 

pomeron or pure pomeron case. Nevertheless, after persisting through 

many hours of tedious calculation we arrive at our results: 

yF(EN) = 

F J- 5+; _ L - 
2p -4- 

1 8&‘/4+p 8 
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Wy,h,p) =-P 

Q,(p) = - 5 

r(3- ;) +4h2fiDr(i-; )Q,(p) I 

D 
2+1 

PF(y,h,p) = - $h - ;hy2(;) r(3-;I -21rh3GDr(1- $9,(p) 
-2rrh2yfiDT(i- ;)Q,(p) 

2 Q,(p) = - ; tn 2 - p - 5 
F--- 1 +p+ p f2p 

I 

Q3(p) = ;2-8pPn2(i+ 3 
1 

8(p- g) 
2) 
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-p2 
(Z-p) 

2 

3 3 257 p2+&+ 117) 
’ 2 

f P2 

2 
2 Pn +0(c) * 

When we search for a zero of 0 and p, we must fix y2 at the value 

given in (4. 5b). The reason is that a fixed point in our 3-dimensional 

parameter space (y, h, p) is given by simultaneous zeros of (3 p’ P, and 

0, and the zeros of p, occur at the values of y2 given in (4.. 5). A 

glance at (4.9) and (4. 10) shows that for this value of y2, given by 

(14. 5b) there is a simultaneous zero of 0 and p, when 

pi ’ (4.11) 

To see whether the zero is infrared stable, we need to study the matrix 

ap, ap, 
-ix- ap i ) . ao ao 
ah ap 

(4.12) 

A necessary and sufficient condition for infrared stability is that the real 

parts of both eigenvalues of the matrix (4.12) be positive definite: 

Re Xi, X2 > 0 . (4.13) 

If the renormalized coupling constants lie in a neighborhood of the fixed 

point, the positivity of the eigenvalues is,in general, required to ensure that 
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y(-t)+yi, p(-t)+pl, h(-t)-hiast*-m 
+ 

(4.14) 

so that the fixed point dominates the infrared limit. 

It can, however, also happen that one or both of the condition (4.13) 

are not satisfied. A case of particular interest to our problem is A 1 > 0 

and x2 < 0, with Xi 2 real. If in the p-h plane q4 and e2 are the eigen- 

vectors of (4. 12) belonging to hi, X2, respectively, then for h and p close 

enough to (4.11) the equations (3.25) and (3. 26) can be written as 

and the vectors decomposed: 

= a(t) z1 + b(t) z2 

+ -+ 
= alei + ble 2 . 

Inserting this into (4. 15), we obtain 

(4.15) 

(4.16) 

(4.16) 

-&[a(t) - a,]zi + &[b(t)- bl]z2 = -A,[a(t) - a,]“i - A,[b(t) -bl]g2 - 

(4.17) 
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Since zI and z2 are linearly independent: 

&la(t) - aJ= - A,[a(t) - ai1 

&[b(t) - bi] = - X2[b(t) - bl] > 

we have the solutions 

a(t) =a4 +cle 
-x1 t -%tt 

, b(t) = bi +did . 

(4.18) 

(4.19 ) 

For t - - m , a(-t) + a 1, b(-t) - m, while for t -t m a(-t) - m, 

b(-t) -b 1’ 
So unless bI = 0, that is unless a lies along the eigen- 

vector ei, the infrared behavior is undermined. If we step out of the 

p-h plane, we see that the condition bl = 0 corresponds to a plane in 

the 3-dimensional parameter space. Of course, if the renormalized 

dimensionless parameters choose to lie exactly at the fixed point, the 

infrar 2d behavior of the theory will governed by that fixed point regardless 

of its stability properties. Finally, we mention that if neither condition 

(4.13) is satisfied, the fixed point can be approached in the infrared 

limit only along a line in the parameter space perpendicular to the 

p-h plane. 

Let us now leave the general discussion and return to the fixed 

point (4.11). At this fixed point, the matrix (4. 12) is 

(4.20) 
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whose eigenvalues are e/4 and -1 + 2 . Hence this is an unstable 

fixed point. The eigen-vector belonging to the positive eigenvalue 

lies along the h-axis. Thus, if the physical values of p and h and y are 

not too far from the fixed point, and moreover, if p=O, so that we start 

on the plane of infrared stability in the 3-dimensional parameter space, 

the Green’s functions [using (3. 29)1 will behave in the infrared limit as 

r(i:n, m) l-yFfyl,hi, 0) - ny Y,(Y,) 

R fSEi.<l, 0, CY ‘9 h >y , EN) - 5 

x r(l;n,m) -w& ) 
R fEi,ki;O, 0’s 3 hi> yl’ EN) (4.21) 

whereyF (yi,hl,0)=-$4, yp(yi)=-&* 

In the next section, we will discuss the physical consequences of the 

solutions, but first we want to see if there are any other fixed points in 

our space. Unfortunately, the coupled Eqs. (4.9) and (4.10) have a 

rather complicated dependence on p. To discover whether there were 

any other simultaneous zeros of p, and 0, we set 0 = 0, solved for h 

in terms of p, plugged that value of h into p,, and used a computer to 

calculate p, as a function of p. Confining ourselves to real values of h 

and p: ’ . we found two more fixed points: 

(h2, p,) = (16.1454 * 5, 0.90439 1 (4.22) 

(h3,p3) = (-14.2071. +6048). (4.23) 
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With sufficient patience one can numerically analyze these fixed 

points for their stability properties. We have done this, and we find 

that both fixed points have one negative and one positive eigenvalue. 

Thus, we have a similar situation as for the fixed point (4. 11) and in 

order to make any statement about the infrared behavior, we must 

require that our initial values (p, h) lie on a certain line in the p-h 

plane (Fig. 5). Viewed in the 3-dimensional space (p, h, y), this again 

corresponds to a plane. If the values of the renormalized parameters 

are such that we approach one of the fixed points (4.22) or (4.23) as 

t * - OD, then the infrared behavior of the Green’s function will be 

~$‘~,~)(~E~,i;~;p ,cr’,h ,y.,EN) = 
f-yFfyihj> pjk =$%p(~,) 

5 

it-0 

r(i;n, m) 
-ft+ f4) 

R fEi>ki;p.. a’5 
J ) J 

h.,yl, EN) (4. 24 1 

fj =2,3) 

where 

yF 
(yi,k2,p2)= -0.649188. ‘z, yF(yl,h3,p3)=-0.20834. ‘z. 

(4. 25) 

The perverse instability described above which evidently afflicts 

all the fixed points in our parameter space has its origin in the fact 

that the pomeron and fermion slopes have different dimensions. In the 
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definition of p, there is a factor of EN 
-1 

. Differentiating this factor 

gives a term -p in the expression for 0 [ Eq. (4.9)1 . By examining 

the matrix, A, [ Eq. (4.12)1 it is straightforward to see that this term 

is responsible for the negative sign of one of the eigenvalues and hence 

for the instability. Indeed, Fig. 5 shows that the planes of stability 

are nearly perpendicular to the p axis (this is a numerical result 

for the fixed points (4. 22) and (4. 23) --in fact, they may be exactly 

perpendicular. The plane of stability for the fixed point at the origin 

is exactly perpendicular to the p axis. ) showing that it is variations in 

this parameter that gives rise to the instability. A different choice for 

the pomeron does give rise to stable fixed points in a pomeron-fermion 

field theory. This will be discussed elsewhere. 11 Let us now turn to 

a description of the physical implications of our theory. 
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v. DISCUSSION AND PHYSICAL CONSEQUENCES OF THE SOLUTIONS 

Let us now examine in more detail the physical implications of our 

solutions. We consider first the fixed point (4. 11) at which the Green’s 

function is given by (4. 21). At this fixed point, p = 0. Moreover, as 

we have shown, the only way to approach this fixed point is to start 

with p = 0. From Ref. ( 3) we know that the renormalized pomeron 

slope, cz’, is not infinite, so p = 0 3 p’ = 0. Now, it is easy to show 

(1;0,0) that to any order in perturbation theory, I R depends on k only 

L-9 (1;0,0) 
in the combination p ‘k, so for p = 0 F R has no <-dependence at 

all to each order in perturbation theory. This indicates, that it is 

(i;O, 0) likely that the exact renormalized inverse fermion propagator F R 

r 
will have no k-dependent zeros in the g-plane. Hence, the fermion 

propagator will have no moving j-plane singularities. Since we are 

looking for a reasonable trajectory with physical fermions, this 

solution is not very attractive. 

Before discussing the other fixed points, we want to mention a very 

interesting connection between our p = 0 fixed point and one of the fixed 

points studied in the rho-pomeron field theory of Ref. (4 ). In a more 

ambitious study of the fermion-pomeron problem, we could have included 

another term in the bare fermion trajectory. In particular, we could 

have used (2.9) instead of (2. H), and the bare propagator would have 

been 
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rather than i [ &?4+ p,‘ql -‘. A priori, we do not ,know whether we would 

obtain the same fixed points with (5. 1) as we did in the present study. 

’ On the other hand, if in (5. 1) PO is set equal to zero, then (5. 1) takes 

the form of a boson trajectory, and we regain the rho-pomeron theory 

studied in Ref. (4 1. Hence, the field theory of Ref. (4) and the one 

treated here are special cases of the more general theory obtained using 

(5. 1). There is, however, a qualitative difference in the amount of 

information lost in the two limits of (5. 1) PO’ = 0 and (Y;~ = 0. 

To demonstrate this, we first remark that although in our bare 

, fermion trajectory, a0F = 0, we can still define a renormalized (YF 

using 

air(“;O’ 0) 

aq2 
-w; (ENI (5. 2) 

it?= -EN 

q2 =o 

In general this will be nonzero. On the other hand, if pi = 0 as in the 

rho-pomeron theory, the renormalized p’ will be identically zero as 

one can see from its definition (3. 10). since the trace of an odd number of 
@” 

F 
y-matrices is zero. Defining R = (yl , we can consider this situation 

in the three dimensional parameter space (h, p. R) shown in Fig. 6. 

(There is, of course, a fourth renormalized dimensionless parameter, 
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y, but since the pomeron renormalization decouples from the secondary 

trajectory, we need not consider it for the moment. ) Since pi = 0 

implies p ’ = 0, if we start with a boson trajectory we will always be 

restricted to the R-h plane in the space of renormalized parameters, 

whereas, since a’ = 0 ==& Q& 
FO 

= 0, starting with the fermion 

trajectory we have used will put us someplace in the entire h, p,R 

space. If in the second case we compute, according to (5. Z), the value 

of @g(EN), R(EN) and EN 
aRtEN) 

aF: at OUr p = 0 fixed point, we find 

8R N 
that R = EN~N = 0. Hence in the p-R-h space, t-his fixed point is 

on the h-axis, and is also a fixed point with respect to variations along 

the new dimension, R. Furthermore, this fixed point is infrared stable 

for p = 0, that is, it is stable against variations in the h-R plane, 

but it is unstable against variations in p (out of the h-R plane). 

Starting with p o ’ = 0, the authors of Ref. (4 1 found a fixed point at 

, Yl 
OF =Oandh=q, which was infrared stable in their parameter 

space, i. e., in the h-R plane. This is the same fixed point as (4. ii) 

in the present study, but since we must consider variations with respect 

to p, the fixed point is unstable in our (larger) 3- dimensional parameter 

space. Notice also that the other fixed points of Ref. (4) do not appear 

as fixed points in our problem. Consequently, enlarging the space from 

that considered in the rho-pomeron problem to include variations in p 

qualitatively modifies the solutions. On the other hand, since in OUI‘ 
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fermion problem @Go = 0 H @‘E = 0, adding a term proportional to 

k2 in (2.11) with PO’ # 0 does not change the dimensionality of the 

renormalized parameter space, and so should not qualitatively 

affect the solutions of the renormalization group equations. These 

observations further justify our neglect of the term proportional to u 

in the bare fermion propagator. 

We continue now and examine the other two fixed points of physical 

interest, (4. 22) and (4. 23 ). Applying the dimensional analysis of Sec. II 

-8 and (3. i5), and writing 5 = - 
EN 

(4. 24 ) becomes 

r(l;O,o+~,:;p ,o’,h .y ,E:,) - EN 

*-yF(yi.hj.pj) 

(5.3) 
R 

5-O 

; ,xj> l,hj,yl> 1 - 
I 

Using (3. 7) we have 

(5.3) =E $(z) + (5.4) 

where 

(5.5) 

and we have suppressed the other arguments y, p. and h of $t and b2 

since they are just constants. One of the most interesting questions is 
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that of the g-plane singularities of the fermion propagator. Using 

(5.4), the fermion propagator may be written 

G(l;o>o) (g$) = 
EN(g) l-‘~{p~ + & $2’z’} A+ 

(5.6) 

+ 
EN@ -y+zJ -4-F $3,M) *- * 

iiF 
( > 

l-YF 
The factor _ E evidently gives rise to a fixed branch point 

N 
in the gplane at g’= 0. Other singularities are due to the zeros of 

m,*da. 2 
Although we do not know the exact form of 4t 2, we do 

know what the motion of these zeros is for small 8. Since $1 2 

depend on if 2 and k only through z, we know that the trajectory moves 

like 

gjE;[ k’)“’ , v =I +s (5.7) 

where so is the value of z for which one of the denominators in (5.6) 

vanishes . Notice that this is the same as the behavior of the pomeron 

trajectory.3 This is a very interesting result from two points of view. 

First, the renormalized fermion trajectory is almost linear in u 

which is consistent with its behavior for large u, where it is 

observed to be approximately proportional to u. Second, the trajectory 

(5. 1) is exactly the same as for the renormalized pomeron, suggesting 
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that the pomeron has very strong personality since in its presence the 

fermion completely forgets who it is, and mimics the behavior of the 

pomeron. 

Apart from the almost linear u behavior of the trajectory, there is 

another feature which makes this solution very attractive. We mentioned 

in Sec. II that the requirements of Mandelstam analyticity forced us to 

start with a pair of bare fermion trajectories with opposite parities, 

instead of a single trajectory as in the boson case. However, the particles 

which should lie on the second, (parity doublet), trajectory have not been 

observed, and no dynamical mechanism has been proposed which 

successfully explains their absence. We shall now show that the form 

(5.6) of the propagator quite naturally leads to the disappearance of the 

parity doublet state as a physical particle. 

Suppose the denominator proportional to A+ in (5. 6) vanishes for 

some zo: 

4,(z,) + 6, 42(zo) = 0 . (5.8) 

In this case we have a trajectory of the form (5. 71, and for a real 

trajectory at positive u(now k2 < 0) the constant has to be positive and 

real. 

g+ =lc *u)l’v, c > 0 . (5.91 

Next, we assume (we shall justify this below) that $i and $2 have analytic 

behavior in z such that 
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$1 ,(z,) = 61 2(e2nizo) . (5. IO) 

Then we see that for z = zoem2+ we have a zero of the second denominator 

of (5.6) since 

4~ (z e 1 0 
-2ni) _ Jxi m2(z0e-27ri) 

(5.11) 

= $,(z,) + Go $,(zo) = 0 
and we have a negative parity pole with the trajectory 

&y =(C e-2ri u )l’V . (5.12) 

[ In fact, we not only have one positive and negative parity pole, but an 

infinite number ;at k?* = (C ue 
4rin,i/v, g-, = (c ue-27ii + 4tin)i/v. 

But since v is close to 1, i v = 1 + E / 241, all these poles are far away 

from each other on different sheets in the g-plane. We shall see, 

that only (5.9) and (5.12) are interesting. 1 
Now let us consider the location of k?+ and g- in the g-plane 

as a function of u (Fig. 7). For u > 0, g+ is real and positive, and 

describes a trajectory with physical particles. At the same time, g 

I;? on another &? sheet (remember the fixed g-cut of the propagator 1, 

and does not appear as a trajectory with physical particles for positive 

u. We now continue to negative u by letting u -f ueiTI. Then the positions 

of the singularities, g+ move to 
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g+(p) = (cup p’v 

gtueirr ) = (cup e-in/v I 
(5.13) 

Sincev > 1, &$?- has passed through the cut and is now on the physical 

sheet. Hence, for u < 0 there are two complex conjugate trajectories 

of opposite parity on the physical angular momentum sheet, but when 

u > 0, one of them moves through the cut onto an unphysical sheet. 

The analyticity properties of our fermion propagator are similar 

to the analyticity properties found by Carlitz and Kislinger ” in their scheme 

of fermion Reggeization. In both their approach and ours, a cut appears 

in the j-plane to hide the negative parity state. The nature of the cuts 

are, however, quite different. More importantly, in the approach of 

Carlitz and Kislinger one assumes ab initio the absence of negative -- 

parity particles, while in the present approach we make no such 

assumptions, but find that they are forced to disappear by the dynamical 

mechanism of renormalization (interaction with the pomeron) even though 

the bare theory possesses such particles. 

We now want to justify the assumption we made, (5. 10), about the 

analyticity of 4, 2. We shall do this by examining in detail the first 

and second order terms in an e-expansion of these scaling functions. 

It will become clear that such an expansion is probably valid in the 

region where we require it. To do this, we first note that at our fixed 

points, the renormalized coupling constants, y and h, are proportional 
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112 
E . Thus, in a lowest non-zero order E -expansion of @j 2 one need only 

consider graphs of order ho and h2. Now if we evaluate IY (1;0,0) 

exactly at the fixed point, the solution (5. 3) holds for all values of E. 

Assuming we can make an e-expansion of the function $i 2 we have 

$l;oso) (@,4,;,,.,0/ ‘,h.(<),~y (E) EN) = E z 
f-yF(yihj, pj’ 

R J J 1 N EN 

(5.14) 

I $,0(z) + E b ,,(z) +ok2) + +qmzo(z~~+ E$2i(z) + Ok2$/ * 

On the other hand, the left-hand side can be evaluated in second order 

renormalized perturbation theory to give 

rwLo+~k. 
R , . . . . 

(5.15) 

where we have dropped the dependence on p., Q’ , h. ( E ), yi( E ). We will 
J 3 

not write down the explicit functional form of (5. 14) but note only this: 

If Gi(G2) has singularities in E = k‘cu’ - , then these have to be 
CT 

singularities in ii? as well. But, from Ref. ( 5 ) we know that the graph 

of Fig. 4b has a&?-cut at (Y *~G and behaves there like (g-a*k2)1n@@ l k2). 

Therefore, considered as a function of 5, G1(G2) have singularities at 

‘i = 1 and behave there like ( I-5 1 Pn [ -5 I). Now for g-+-EN, z -z’. 

Comparing (5. 14) and (5.15) we obtain 
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6,(z) =-I+ <Gi(-z,...) 

(5.16) 

b2(z) = 9 + eG2(-z,...) . 

Seeking the zeros of (5.81, we find to first order E: 

1 = - + E const 
z” d1 

pJ 

(5.17) 

which, as long as the const. is not too negative, is far away from 

z = -1, where 6,(z) and 4,(z) have their singularities. As long as we 

consider a z. which avoids these singularities, we can be reasonably 

confident in the reliability of the e-expansion of $i 2. Furthermore, 

since the branch points of o~i 2 - in z are not near the origin 

(see Figure 8) , we can rotate zO by Zrri about the origin 

avoiding these singularities. Hence (5.10) will be 

valid, and this is all we need for the validity of ou‘ argument about the 

disappearance of the parity doublets. It is important to notice that the 

graphs which contribute to higher orders in the e-expansion of $1 2 

only have z-plane singularities further from the origin, and so will 

not vitiate our arguments. In addition, we stress that we do not require 

either the e-expansion of $i 2 or analyticity of 4i 2 for all values of 

z. Our actual requirements are much less stringent. 

We now want to discuss the implications of our results for the 

backward T-N scattering amplitude. In general, there will be contributions 
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to this amplitude from the Green’s function G 
(lm, m) for all n and m. 

(Figure 9). Assuming, as usual, that for small u the couplings of the 

Reggeons to the external particles are constants, and using arguments 

similar to those of Ref. (3 ), we have, for the contribution in the gplane 

of G(l;n, m) to the backward V-N amplitude 

I n m( i% q2) = NnNm dDKi 1. . dDKn+m+2 dgld g2dEi . . . dEn+m 

n+l 
6(;Ei+gi-g) 6(;Ei+g2 -g) bD(C Ki-q)hD( 

m+l 
= Ki-9) 

x G(;n’m)(gl, &f2> Ei,Kf) (5.18) 

which for is? + 0 becomes 

I (n+m)E +lFn m (q,@2) 
. (5.19) 

Using the values for yp’v ate = 2: 

E 1 - =- - 
yp = - 12 6 

v.i+&=g (5.20) 

we learn from the Sommerfeld-Watson transform of (5.19) that the leading 

term is given by n=m = 0, i. e., renormalized fermion exchange without 

Other terms are down roughly by factors of (In S) 
-$(n+m) 

pomerons. 

so the asymptotic backward ir-N amplitude is governed by the renormalized 

fermion propagator G (l;O, O! . This is the same situation encountered 

in Ref. (3 ) for forward elastic scattering where the renormalized 

pomeron propagator was found to dominate the elastic amplitude. 
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Atu =O,our fermion propagator has a cut startingat g4= 0, which gives a 

contribution to t hs scattering amplitude of the form 

l-AF -YF 
“S (Ins) . (5. 21) 

For u < 0, we have both a branch point at g= 0 and the two complex 

conjugate moving poles. The fixed-cut contribution behaves like 

l-h -yF - VIZ 
S F (1n sl . f(u) (5.22) 

while the two poles contribute terms 

l-A. - const . u I/V 

S r) (cu)f(u)A+ +comp&conj ~ A- . (5.23) 

This gives rise to oscillatory behavior proportional to cos [ c’ln~s, Im (u lb ,I . 

However, sincev is close to 1, Im(u 
11-J ), is small, and the oscillations 

have a rather long wavelength.~ 

Finally, it is interesting to compare our results with the results 

obtained by Gribov, Levin and Migda15 who studied a theory quite 

similar to the one considered here. These authors assumed a weak 

coupling solution for the pomeron-pomeron interactions, in which the 

effective triple pomeron coupling vanishes like E when E goes to 

zero. As a consequence of their belief that such a coupling would be 
i 

relatively unimportant, they neglected the coupling of the pomeron to 

itself and considered a theory in which the pomeron couples only to the 

fermion. In such~a theory, a Ward identity holds, which relates to 
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fermion Green’s function to the fermion-fermion-pomeron vertex functions. 

Using this Ward identity, Gribov, Levin and Migdal were able to 

predict in their theory the form of the fully renormalized fermion trajectory. 

They concluded that regardless of whether the solution was for “weak” 

or “strong” coupling between the pomeron and the fermion, the exact 

renormalized fermion trajectory has to be of the form iY= VT. 

In contrast to this, our theory contains a non-zero pomeron self 

coupling. We know from Ref. (3) that after pomeron renormalization, 

the effective triple pomeron vertex does not vanish linearly in E but 

rather like a fractional power of E, and the difference of our result 

from that of Gribov et al -2’ confirms that the pomeron self-coupling 

really plays an important role in the renormalization of the fermion 

trajectory. As to the question whether “weak” or “strong” coupling 

holds, it is obvious that the renormalized fermion propagator is 

qualitatively very different from the bare propagator, and so we find 

no support for the “weak” coupling. 

VI. CONCLUSIONS 

In our study of a Reggeon field theory with fermions, we have 

encountered several very interesting properties which we woul~d like 

to review. 

One of the most interesting aspects of this theory is that its behavior 

at some of the fixed points provides a natural dynamical mechanism to 

explain the absence of the fermion parity doublets.. Even if one chooses, 
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as we have done, a bare fermion propagator with poles on the physical 

j-plane sheet of both parities, after interaction with the pomeron, a 

j-plane cut develops in the renormalized fermion Green’s function, and 

the parity partner moves off the physical sheet for positive u. 

The major ingredient necessary for this result is the generation of the 

required j-plane cut. Such a cut is a quite general property of the 

renormalization procedure, and can be expected to occur in most theories. 

A possible exception to this are theories in which the fermion is infrared 

free. In that case, the anomalous dimension at the fixed point is zero, 

and one must look for weaker branch cuts to hide the fermion parity 

partner. Depending on the theory, these may or may not be present. 

The strong influence of the pomeron On the fermion trajectory is 

shown very clearly by another aspect of our theory. Although our bare 
1 

fermion trajectory was proportional to u2 , after interacting with the 

pomeron it became roughly proportional to u. This qualitatively different 

behavior is indeed striking, especially when contrasted with the results 

of Ref. (5 ), and shows that, as in many other reactions, any attempt 

to understand backward rr-N scattering must include in a serious way 

the effects of the pomeron. 

In view of the recent interesting theoretical developments in this 

area, we would like to modestly suggest that a phenomenology for 

Reggeon field theories be developed. The reason such a program may 

hold some promise is that there are many relations implied by these 

field theories among different renormalized Green’s functions. For 

example, in the theory we have described, the renormalized pomeron 
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and fermion trajectories have the same behavior near t (or u) = 0. 

Since the two point renorlrfalized Green’s functions are asymptotically 

the most important, there should be striking similarities in the behavior 

of near forward elastic scattering, and near backward rr-N scattering. 

For example, in our theory, one expects to see oscillations of the form(5. 23) 

in both elastic scattering near t = 0 and rr-N scattering near u= 0. Other 

field theories will undoubtedly imply similar kinds of relations, some of 

which may be amenable to experimental verification. 

The Reggeon field theory we have studied has produced a number of 

very interesting physical and mathematical results. The mechanism 

for ridding the world of fermion parity doublets, the evidence for the 

strong influence of the pomeron and the fact that there are intriguing 

implications for high energy phenomenology are all properties of our 

theory which are expected to be features of most Reggeon field theories. 

On the other hand, one cannot overlook the fact that none of the fixed 

points of our theory is infrared stable. Since this instability is most 

likely due to the different dimensions of the slope parameters of the 

theory, one may have considerable optimism that this is not a general 

property of all fermion-pomeron theories. Indeed, this unwanted 

characteristic should only induce us to study this rich new approach 

even further. 

We are very grateful to H. Abarbanel, R. Sugar, A. White and 

especially J. Bronzan for many enlightening discussions. 
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APPENDIX 

In this Appendix we give a short description how to arrive at (4.8 ) - 

(4. IO). For the calculation of ZF and P(EN) we compute the graph of 

Fig. 4a: 

rO [ -1 i 
D+l k dE --E+&-^k) E-cu ,k2 = 

(2n) 2 
0 

(A. I) 

With the renormalization conditions (3.9) and (3. 10) we have: 

and 

1 
TF v ti?= - EN 

s”2= 0 

(A. 2) 

air(l;O’ 0) 

p’(EN) = R- 

,ir(l;o’ 0) ’ 

=zF U . (A.31 
8s G 

-g=EN 
-2 
q =o 

Within the calculation of the integral of (A. 1) and the derivatives for 

-2 
(A. Z), (A. 3) the choice of the ren:ormalization point q, 2 = 0 considerably 

PO 
simplifies the work. Moreover, the variable p. = x turns out to 

o N 
be a natural variable. 

For r we have to calculate the graphs of Fig. 4b: 
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r;‘OJ1 )( i?,;, ~l>;1~E2;2) = rO 

D+i 

(277) 2 

2 r A + 0 0 
_i 

dD,k dE 
g-E :p,- (6 -k^) 

1 i 
D+1 

(2a)3 2 
E -a;ik2 E-E2 -a G (k-q2)2+i E 

(A.4) 

+ i i 

(2rr)3 2 
E-,;k2 E2-E-Q; (k-q2)2 +ie 

+ dDkdE 
i 

(21TJ3 2 
%EipiiG-G) K~-E+p~(<i-C;) E-Dik2+i, - 

From this we obtain r by (3.11): 

r =,I12 z (l;O, 1) 
D+i p F”U 

EN EN 
(-EN>% -y- > 0; -y,O) m 65) 

err) 2 

All other quantities are built up by direct use of their definitions. 



-48- FERMILAB-Pub-74/ 6i-THY 

REFERENCES 

1 V.N. Gribov, Zh. Eksp. Teor. Fiz., 53, 654 (1967) [Soviet Physics 

JETP2, 414 (1968 1. 1 

2 V. N. Gribov and A. A. Migdal, Zh. Eksp. Teor. Fiz., 2, 1498 (1968) 

[Soviet Physics JETP 2&, 784 (196911 ; Yad. Fiz., 8, 1002 (1968) 

[Sov. J. Nut. Phys. 8, 583 (1969)1; Yad. Fiz. s, 1213 (1968) [Sov. 

J. Nucl. Phys. 2, 703 (i969)!; V.N. Gribov, E.M. Levin and A.A. 

Migdal, Yad. Fiz. c, 173 (1970) [SOV. J. Nucl. Phys. 5, 93 

(1971)l and Zh. Eksp. Teor. Fiz. 2, 2140 (1970) [Soviet Physics 

JETP 2_1, 1158 (1971)1 . 

3H. D. I. Abarbanel and J. B. Bronzan, NAL-Pub-73/91-THY. 

4 H. D. I. Abarbanel and R. L. Sugar, NAL-Pub-74/33-THY. 

5 
V. N. Gribov, E. M. Levin and A. A. Migdal, Yad. Fiz. 1_1_, 673 (1969) 

[Sov. 3. Nucl. Phys. 13 378 (197011. 

6 V.N. Gribov, Zh. Eksp. Teor. Fiz. 5, 1529 (1962) [Soviet Physics 

JETP 5, 1080 (1963) 1 ; V. N. Gribov, L. Okun’, and I. Pomeranchuk, 

Zh. Eksp. Teor. Fiz. 45, 1114 (1963) 1 Soviet Physics JETP g, 769 (196411 . 

7 
N. N. Bogolivbov and D. V. Shirkov, Introduction to the Theory of 

Quantized Fields, Wiley-Interscience 1959. 

8 
J. Bartels and R. Savit, FNAL-Pub-74/60-THY, to be published. 

9 
J. Brewer and J. Ellis, preprint UCSC 741101. 



-49- FERMILAB-Pub-741 61-THY 

10 Calculations of higher order terms in E carried out by J. Bronzan 

and J. Dash and M. Baker for the theory of Ref. 3 do not seem to 

justify this hope. Indeed, terms of order e2 are as large as terms 

of order E. However, one of our most interesting results namely, 

the mechanism for the disappearance of the fermion parity doublets 

does not critically depend on the specific value of the anomalous 

dimensions of the theory, and is therefore relatively independent of 

the validity of the first order E -expansion. 

11 
R. Savit, in preparation. 

12 R. Carlitz and M. Kislinger, Phys. Rev. Lett. g, 186 (1970). 



-5o- FERMILAB-Pub-74/61-THY 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

FIGURE CAPTIONS 

Backward rrN-scattering with fermion exchange. 

A reggeon diagram contributing to Fig. 1. The 

vertical straight line denotes a reggeized fermion, 

the wavy line a pomeron. 

Definition of G(k’n’ m). 

Lowest order graphs for (a) F(i”“) and 

(b) p;o, 1) 

Fixed points in the h-p plane and their infrared 

stable eigenvectors. 

Three-dimensional space of the renormalized 

parameters R, p and h. The fixed point at h = hi 

is infrared stable in the h - R plane but unstable 

with respect variations in p. 

Location of g+, $?- as a function of u. The wavy 

line in the &? plane denotes the cut in g. 

(a) Analytic structure of $i(z) 

(b) Analytic structure of 6 $2(z). Following the 

paths indicated takes bi(zo) -f @1 (z,) and 4% $2(zo) -+ 

- Gl b2(zo). 



Fig. 9 
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Scattering amplitude with the exchange of 1 fermion 

(straight line) and an arbitrary number of pomerons 

(wavy lines 1. 
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